欧美午夜精品理论片a级按摩,亚洲视频免费观看,欧美特黄一级,中文字幕一区二区av

我要找:  
您的位置:電源在線首頁(yè)>>行業(yè)資訊>>解決方案>>Calculating IGBT Driver Output for Optimum Performance正文

Calculating IGBT Driver Output for Optimum Performance

By Markus Hermwille, Senior Product Manager, Semikron International, Hudson, N.H

2008/10/28 16:29:28   電源在線網(wǎng)
分享到:

Today, insulated gate bipolar transistors (IGBTs) have reached a broad penetration in power electronics and are used in many applications such as frequency converters, power supplies and electronic drives. IGBTs have high inverse voltages (up to 6.5 kV) and are capable of switching currents up to 3 kA. One key component of every power electronics system — besides the power modules themselves — is the IGBT driver, which forms the vital interface between the power transistor and the controller.

Selection of the driver and the calculation of the optimum driver output power determine the reliability of the converter solution. Insufficient driver power or the wrong driver may result in module and driver malfunction. By following the procedure outlined here, designers can accurately calculate driver output power to achieve optimum performance of switching IGBTs.[1]

Gate Charge Characterizes IGBT Behavior

The switching behavior of an IGBT module is determined mainly by semiconductor capacitances (charges) and the internal and outer resistances. Fig. 1 shows a sketch of the IGBT capacitances where CGE is the gate-emitter capacitance, CCE the collector-emitter capacitance and CGC the gate-collector capacitance or Miller capacitance. The gate charge is characterized by the CGC and CGE input capacitances and is the key parameter when calculating the output-power requirements for an IGBT driver circuit.

The capacitances are almost independent of temperature but strongly voltage dependent, and as such are a function of the collector-emitter voltage( VCE) of the IGBTs. While this dependency is substantially higher at a very low VCE, it is less noticeable at higher voltages.

When the IGBT is turned on, the gate charge characterizes the behavior of the IGBT. Fig. 2 shows the simplified waveforms of the gate-emitter voltage (VGE), the gate current (IG) and the corresponding collector current (IC) as functions of time from turn-on of the IGBT to its saturation.

The turn-on process can be divided into three stages as seen in the IG = f(t) diagram:

  1. Charging of the CGE
  2. Charging of the CGC
  3. Charging of the CGE until full IGBT saturation

The IG charges the input capacitances, and the VGE and VCE voltages that are dependent of the charging process characterize the turn-on and turn-off behavior of the IGBT. During turn-off, the processes described are running in reverse direction and the charge has to be removed from the gate. To calculate the driver output power, the input capacitances may only be applied to a certain extent due to their nonlinearity. A more practical way of determining the driver output power is to use the gate-charge characteristic.

How to Measure and Determine Gate Charge

By means of a simplified test circuit, the gate charge can be measured. Through a constant-current source (QG = I x t), the gate is driven while VGE is measured with an oscilloscope.[2] The determined gate-charge curve (Fig. 3) can be used to calculate the gate charge per pulse needed to drive the IGBT. The total VGE can be calculated by taking the difference of the applied gate turn-on (VG(on)) and turn-off voltage (VG(off)) into account.

The graph in image 3 of the IGBT data sheets shows the gate-charge curve in the positive and negative quadrants. If the gate-charge curve is given in the positive quadrant only, the gate-charge amplitude can be read out by extrapolation. Even in the case where no gate-charge curve is available the gate charge can be determined by means of a less accurate method using the input capacitance CIES = CGE + CGC.[3]

 

Driver Output Power and Gate Current

The individual power of the trigger circuit needed to drive the IGBT can be found as a function of the intended switching frequency and the energy that has to be used to charge and discharge the IGBT. The driver output power (PGD(out)) is the electrical energy (E) times the switching frequency (fSW):
PGD(out) = E x fSW.

Here, E is the product of the gate charge and the difference of the turn-on and turn-off voltages:
E = QG x (VG(on) - VG(off)).

Therefore, driver output power is dependent on gate charge, turn-on and turn-off voltages and the switching frequency:
PGD(out) = QG x (VG(on) - VG(off)) x fSW.

Another key requirement for IGBT driver circuits is that enough current can be supplied to charge and discharge the input capacitances of the IGBT and thus to switch the IGBT on and off. This gate current can be calculated using the equations for IGBT input-capacitance charging (Fig. 4). The gate current calculated is the minimum average output current of the driver output stage per channel:
IG = IGE + IGC = QG x fSW.

The IGBT switching time is controlled by charging and discharging the gate of the IGBT. If the gate peak current is increased, the turn-on and turn-off time will be shorter and the switching losses reduced. This obviously has an impact on other switching parameters such as overvoltage stress, which have to be watched.

The gate-charge currents can be controlled by the turn-on and turn-off gate resistors (RG(on) and RG(off), respectively).[4] The theoretical peak current can be easily calculated IGPEAK=(VG(on) - VG(off))/(RG+RG(int)). Here, the IGBT module's internal gate resistor RG(int) must be taken into account. In practice, stray inductance reduces the peak value below the possible theoretical value. In the data sheet of an IGBT driver, a maximum peak current is given, as are the minimum values for the gate resistors. If both these maximum and minimum ratings are exceeded, the driver output may be harmed as a result.

IGBT Driver Choice

Selecting the suitable IGBT driver requires a few considerations. The maximum average output current of the driver must be higher than the calculated value and the maximum peak gate current of the driver must be equal to or higher than the maximum calculated peak gate current. The output capacitors of the driver must be able to deliver the gate charge needed to charge and discharge the gate of the IGBT.

When selecting a suitable driver, the maximum charge per pulse as listed in the driver data sheet must be duly considered. The selection of a suitable driver, regardless of the application, can be easily accomplished by using the tool DriverSel. DriverSel is a free software tool available at www.semikron.com that, based on the aforementioned characteristics and equations, calculates suitable IGBT drivers on the basis of the IGBT module selected, the number of paralleled modules, the gate resistor, the fSW and VCE. This tool can be used for driver calculation and selection of any brand and IGBT package, as well as to calculate the necessary gate charge and average current.[5]

References

  1. Hermwille, M., "Plug and Play IGBT Driver Cores for Converters," Power Electronics Europe, Issue 2, pp. 10-12, 2006.
  2. IEC 60747-9, Ed.2: Semiconductor Devices – Discrete Devices – Part 9: Insulated-Gate Bipolar Transistors (IGBTs).
  3. Hermwille, M. IGBT Driver Calculation, Application Note AN-7004, SEMIKRON International.
  4. Hermwille, M. "Gate Resistor – Principle and Application," Application Note AN-7003, SEMIKRON International.
  5. SEMIKRON International, www.semikron.com.

For Further Reading

  1. 1. SEMIKRON International, Application Manual Power Modules.
  2. Bhosale, P., Hermwille, M., "Connection of Gate Drivers to IGBT and Controller," Application Note AN-7002, SEMIKRON International.
   免責(zé)聲明:本文僅代表作者個(gè)人觀點(diǎn),與電源在線網(wǎng)無(wú)關(guān)。其原創(chuàng)性以及文中陳述文字和內(nèi)容未經(jīng)本站證實(shí),對(duì)本文以及其中全部或者部分內(nèi)容、文字的真實(shí)性、完整性、及時(shí)性本站不作任何保證或承諾,請(qǐng)讀者僅作參考,并請(qǐng)自行核實(shí)相關(guān)內(nèi)容。
編輯:ronvy
本文鏈接:Calculating IGBT Dr
http:m.mangadaku.com/news/2008-10/20081028162928.html
文章標(biāo)簽: IGBT/Semikron
  投稿熱線 0755-82905460    郵箱  :news@cps800.com
關(guān)于該條新聞資訊信息已有0條留言,我有如下留言:
請(qǐng)您注意:
·遵守中華人民共和國(guó)的各項(xiàng)有關(guān)法律法規(guī)
·承擔(dān)一切因您的行為而導(dǎo)致的法律責(zé)任
·本網(wǎng)留言板管理人員有權(quán)刪除其管轄的留言內(nèi)容
·您在本網(wǎng)的留言內(nèi)容,本網(wǎng)有權(quán)在網(wǎng)站內(nèi)轉(zhuǎn)載或引用
·參與本留言即表明您已經(jīng)閱讀并接受上述條款
用戶名: 密碼: 匿名留言   免費(fèi)注冊(cè)會(huì)員
關(guān)鍵字:
        
按時(shí)間:
關(guān)閉
欧美午夜精品理论片a级按摩,亚洲视频免费观看,欧美特黄一级,中文字幕一区二区av
蜜桃免费网站一区二区三区| 欧美视频一区二区三区| 亚洲综合小说图片| 欧美激情一区二区三区全黄| 欧美一级在线视频| 欧美人与z0zoxxxx视频| 欧美精品 国产精品| 欧美午夜电影一区| 欧美精品成人一区二区三区四区| 欧美日韩综合在线| 91精品在线观看入口| 在线播放亚洲一区| 欧美本精品男人aⅴ天堂| www久久精品| 国产精品私人自拍| 亚洲美女少妇撒尿| 亚洲va欧美va天堂v国产综合| 亚洲va欧美va天堂v国产综合| 午夜亚洲国产au精品一区二区| 日韩成人伦理电影在线观看| 国内一区二区在线| 99久久99精品久久久久久| 91网站最新网址| 欧美人牲a欧美精品| 亚洲精品一区二区三区福利| 国产精品初高中害羞小美女文| 亚洲一区二区欧美激情| 蜜桃精品在线观看| 99热精品国产| 欧美麻豆精品久久久久久| 久久综合九色欧美综合狠狠| 综合色天天鬼久久鬼色| 蜜乳av一区二区| 从欧美一区二区三区| 欧美日韩一区二区三区免费看| 26uuu另类欧美亚洲曰本| 亚洲精品国产品国语在线app| 日本美女视频一区二区| 99re在线视频这里只有精品| 日韩欧美一卡二卡| 亚洲男人的天堂一区二区| 久久成人久久鬼色| 91麻豆国产香蕉久久精品| 精品国产不卡一区二区三区| 亚洲一区中文日韩| 国产成人精品亚洲777人妖| 欧美午夜精品久久久久久孕妇| 久久免费偷拍视频| 日韩中文字幕不卡| 在线精品视频免费播放| 欧美激情在线一区二区三区| 日韩av一区二| 色88888久久久久久影院野外 | 国产视频一区二区在线| 天天色综合成人网| 日本乱人伦一区| 国产精品久久久久aaaa樱花 | 国产不卡视频在线播放| 欧美日韩国产高清一区二区| 国产精品久久久久久久久动漫| 国产一区中文字幕| 日韩欧美中文字幕公布| 天堂成人免费av电影一区| 日本高清不卡一区| 亚洲精品日韩一| 色婷婷精品久久二区二区蜜臂av| 国产精品美女久久久久久久| 国产suv精品一区二区6| 欧美mv和日韩mv的网站| 日本欧美加勒比视频| 欧美精品丝袜久久久中文字幕| 日韩理论片中文av| 成人丝袜视频网| 国产精品网站在线观看| 成人性视频免费网站| 国产婷婷色一区二区三区四区| 国产一区二区不卡| 久久久综合视频| 国产在线播放一区| 久久免费美女视频| 成人免费视频网站在线观看| 日本一区二区三区国色天香 | 色婷婷av一区二区三区软件| 国产精品久久久久久一区二区三区| 成人精品在线视频观看| 中文久久乱码一区二区| 91色婷婷久久久久合中文| 国产精品国产三级国产aⅴ中文| 91在线视频网址| 亚洲综合区在线| 欧美精品在线视频| 麻豆精品国产91久久久久久| 久久这里都是精品| 99麻豆久久久国产精品免费 | 欧美亚洲禁片免费| 日本视频一区二区三区| 欧美tk—视频vk| 成人h动漫精品| 亚洲激情六月丁香| 欧美一级在线视频| 成人免费的视频| 亚洲一区二区影院| 日韩午夜在线播放| 成人av第一页| 日韩av电影免费观看高清完整版 | 顶级嫩模精品视频在线看| 国产精品久久久久久久久免费樱桃 | 欧美成人一区二区三区在线观看| 久久成人免费网| 亚洲欧洲精品一区二区精品久久久 | 99久久久无码国产精品| 午夜婷婷国产麻豆精品| 国产三级久久久| 欧美日韩国产另类一区| 国产乱码精品一品二品| 亚洲午夜久久久久久久久久久| 欧美精品一区二区三区视频| 成人午夜激情影院| 蜜臂av日日欢夜夜爽一区| 成人欧美一区二区三区小说| 欧美一级电影网站| caoporen国产精品视频| 日本v片在线高清不卡在线观看| 中文字幕一区二区三区在线观看| 777精品伊人久久久久大香线蕉| 粉嫩蜜臀av国产精品网站| 日韩高清一区在线| 亚洲六月丁香色婷婷综合久久 | 激情五月婷婷综合| 亚洲综合视频在线| 中文字幕中文在线不卡住| 日韩女优毛片在线| 91黄色激情网站| 成人av免费在线| 国产成人综合自拍| 黑人精品欧美一区二区蜜桃| 免费成人在线播放| 亚洲动漫第一页| 亚洲精品伦理在线| 18欧美乱大交hd1984| 国产精品理伦片| 国产精品区一区二区三| 久久精品视频一区二区三区| 精品国产一区二区三区久久影院 | 国产日产欧美一区二区视频| 日韩丝袜美女视频| 日韩一区二区视频| 日韩欧美一级二级三级| 欧美一区二区免费视频| 在线综合视频播放| 欧美一卡在线观看| 日韩一级欧美一级| 欧美一区永久视频免费观看| 91.xcao| 欧美一区二区不卡视频| 日韩欧美国产一二三区| 日韩欧美中文字幕一区| 亚洲精品一区二区三区在线观看| 欧美精品一区二区三区很污很色的| 日韩欧美电影一区| 26uuu欧美| 国产精品丝袜一区| 亚洲欧美日韩久久| 亚洲国产精品天堂| 日本亚洲天堂网| 激情综合色丁香一区二区| 国产精品一卡二| 成人激情电影免费在线观看| 波多野结衣亚洲一区| 欧美亚洲综合一区| 日韩欧美一区二区视频| 久久精品日产第一区二区三区高清版| 亚洲国产精品高清| 亚洲国产精品影院| 国内精品久久久久影院一蜜桃| 丁香一区二区三区| 欧美专区在线观看一区| 日韩午夜小视频| 中文字幕在线不卡一区二区三区| 一区二区三区免费| 免费成人在线观看| 成人理论电影网| 欧美疯狂性受xxxxx喷水图片| 久久久精品免费网站| 亚洲一区二区在线播放相泽| 国产在线国偷精品免费看| 色综合亚洲欧洲| 精品国产亚洲一区二区三区在线观看 | 久久久综合精品| 亚洲一区在线观看网站| 国模大尺度一区二区三区| 色综合咪咪久久| 欧美大片在线观看一区| 一区二区三区成人在线视频| 久久国产三级精品| 欧洲另类一二三四区| 国产欧美日韩中文久久| 五月婷婷激情综合| 91蜜桃在线观看| 欧美经典三级视频一区二区三区|